Prefibrillar amyloid aggregates could be generic toxins in higher organisms.

نویسندگان

  • Serena Baglioni
  • Fiorella Casamenti
  • Monica Bucciantini
  • Leila M Luheshi
  • Niccolò Taddei
  • Fabrizio Chiti
  • Christopher M Dobson
  • Massimo Stefani
چکیده

More than 40 human diseases are associated with fibrillar deposits of specific peptides or proteins in tissue. Amyloid fibrils, or their precursors, can be highly toxic to cells, suggesting their key role in disease pathogenesis. Proteins not associated with any disease are able to form oligomers and amyloid assemblies in vitro displaying structures and cytotoxicity comparable with those of aggregates of disease-related polypeptides. In isolated cells, such toxicity has been shown to result from increased membrane permeability with disruption of ion homeostasis and oxidative stress. Here we microinjected into the nucleus basalis magnocellularis of rat brains aggregates of an Src homology 3 domain and the N-terminal domain of the prokaryotic HypF, neither of which is associated with amyloid disease. Prefibrillar aggregates of both proteins, but not their mature fibrils or soluble monomers, impaired cholinergic neuron viability in a dose-dependent manner similar to that seen in cell cultures. Contrary to the situation with cultured cells, however, under our experimental conditions, cell stress in tissue is not followed by a comparable level of cell death, a result that is very likely to reflect the presence of protective mechanisms reducing aggregate toxicity. These findings support the hypothesis that neurodegenerative disorders result primarily from a generic cell dysfunction caused by early misfolded species in the aggregation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar AÎ2 oligomers

Background: Age-related neurodegenerative diseases share a number of important pathological features, such as accumulation of misfolded proteins as amyloid oligomers and fibrils. Recent evidence suggests that soluble amyloid oligomers and not the insoluble amyloid fibrils may represent the primary pathological species of protein aggregates. Results: We have produced several monoclonal antibodie...

متن کامل

Prefibrillar amyloid protein aggregates share common features of cytotoxicity.

The intracellular free Ca(2+) concentration and redox status of murine fibroblasts exposed to prefibrillar aggregates of the HypF N-terminal domain have been investigated in vitro and in vivo using a range of fluorescent probes. Aggregate entrance into the cytoplasm is followed by an early rise of reactive oxygen species and free Ca(2+) levels and eventually by cell death. Such changes correlat...

متن کامل

Pore formation by human stefin B in its native and oligomeric states and the consequent amyloid induced toxicity

It is well documented that amyloid forming peptides and proteins interact with membranes and that this correlates with cytotoxicity. To introduce the theme we give a brief description of some amyloidogenic proteins and note their similarities with pore forming toxins (PFTs) and cell penetrating peptides. Human stefin B, a member of the family of cystatins, is an amyloidogenic protein in vitro. ...

متن کامل

Formation of lamellar micelle-like oligomers and membrane disruption revealed by the study of short peptide hIAPP18-27.

Prefibrillar amyloid aggregates of proteins are known as cytotoxic species and a common pathogenic factor for many degenerative diseases. The mechanism underlying the formation and cytotoxicity of prefibrillar aggregates is believed to be independent of the actual nature of the amyloid protein. In this study, we monitored the formation of the peptide oligomers and examined the disruptive effect...

متن کامل

Prefibrillar huntingtin oligomers isolated from HD brain potently seed amyloid formation.

Many neurodegenerative diseases are associated with deposits of aggregated protein in the brain. The molecular pathways through which soluble proteins misfold to form amyloids and large protein aggregates often include diverse oligomeric species, only some of which progress to the amyloid state. Here we show that prefibrillar huntingtin (HTT) oligomers, isolated from Huntington's disease (HD) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 31  شماره 

صفحات  -

تاریخ انتشار 2006